7,435 research outputs found

    Chiral dynamics of hadrons in nuclei

    Get PDF
    In this talk I report on selected topics of hadron modification in the nuclear medium using the chiral unitary approach to describe the dynamics of the problems. I shall mention how antikaons, η\eta, and ϕ\phi are modified in the medium and will report upon different experiments done or planned to measure the ϕ\phi width in the medium.Comment: 10 pgs, 3 figs. Invited talk in the Workshop on in Medium Hadron Physics, Giessen, Nov 200

    Noise control by sonic crystal barriers made of recycled materials

    Full text link
    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is here reported. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments

    The synergetic effect from the combination of different adsorption resins in batch and semi-continuous cultivations of S. Cerevisiae cell factories to produce acetylated Taxanes precursors of the anticancer drug Taxol

    Get PDF
    In situ product recovery is an efficient way to intensify bioprocesses as it can perform adsorption of the desired natural products in the cultivation. However, it is common to use only one adsorbent (liquid or solid) to perform the product recovery. For this study, the use of an in situ product recovery method with three combined commercial resins (HP-20, XAD7HP, and HP-2MG) with different chemical properties was performed. A new yeast strain of Saccharomyces cerevisiae was engineered using CRISPR Cas9 (strain EJ2) to deliver heterologous expression of oxygenated acetylated taxanes that are precursors of the anticancer drug Taxol ® (paclitaxel). Microscale cultivations using a definitive screening design (DSD) were set to get the best resin combinations and concentrations to retrieve high taxane titers. Once the best resin treatment was selected by the DSD, semi-continuous cultivation in high throughput microscale was performed to increase the total taxanes yield up to 783 ± 33 mg/L. The best T5α-yl Acetate yield obtained was up to 95 ± 4 mg/L, the highest titer of this compound ever reported by a heterologous expression. It was also observed that by using a combination of the resins in the cultivation, 8 additional uncharacterized taxanes were found in the gas chromatograms compared to the dodecane overlay method. Lastly, the cell-waste reactive oxygen species concentrations from the yeast were 1.5-fold lower in the resin's treatment compared to the control with no adsorbent aid. The possible future implications of this method could be critical for bioprocess intensification, allowing the transition to a semi-continuous flow bioprocess. Further, this new methodology broadens the use of different organisms for natural product synthesis/discovery benefiting from clear bioprocess intensification advantages

    Reflection of electrons from a domain wall in magnetic nanojunctions

    Full text link
    Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental observations. We also calculate the spin current flowing through the wall and the spin polarization of electron gas due to reflections from the domain wall.Comment: 7 pages, 4 figure

    Ballistic and diffuse transport through a ferromagnetic domain wall

    Full text link
    We study transport through ballistic and diffuse ferromagnetic domain walls in a two-band Stoner model with a rotating magnetization direction. For a ballistic domain wall, the change in the conductance due to the domain wall scattering is obtained from an adiabatic approximation valid when the length of the domain wall is much longer than the Fermi wavelength. In diffuse systems, the change in the resistivity is calculated using a diagrammatic technique to the lowest order in the domain wall scattering and taking into account spin-dependent scattering lifetimes and screening of the domain wall potential.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Domain Wall Resistance based on Landauer's Formula

    Full text link
    The scattering of the electron by a domain wall in a nano-wire is calculated perturbatively to the lowest order. The resistance is calculated by use of Landauer's formula. The result is shown to agree with the result of the linear response theory if the equilibrium is assumed in the four-terminal case

    Electrons in a ferromagnetic metal with a domain wall

    Full text link
    We present theoretical description of conduction electrons interacting with a domain wall in ferromagnetic metals. The description takes into account interaction between electrons. Within the semiclassical approximation we calculate the spin and charge distributions, particularly their modification by the domain wall. In the same approximation we calculate local transport characteristics, including relaxation times and charge and spin conductivities. It is shown that these parameters are significantly modified near the wall and this modification depends on electron-electron interaction.Comment: 10 pages with 4 figure

    Chiral dynamics of baryon resonances and hadrons in a nuclear medium

    Get PDF
    In these lectures I make an introduction to chiral unitary theory applied to the meson baryon interaction and show how several well known resonances are dynamically generated, and others are predicted. Two very recent experiments are analyzed, one of them showing the existence of two Λ(1405)\Lambda(1405) states and the other one providing support for the Λ(1520)\Lambda(1520) resonance as a quasibound state of Σ(1385)π\Sigma(1385) \pi. The use of chiral Lagrangians to account for the hadronic interaction at the elementary level introduces a new approach to deal with the modification of meson and baryon properties in a nuclear medium. Examples of it for Kˉ\bar{K}, η\eta and ϕ\phi modification in the nuclear medium are presented.Comment: Lectures given in the Workshop on Hadron Physics, Puri (India), march 200

    Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances

    Get PDF
    We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled channels unitary approach, including also the pseudoscalar-baryon channels which couple to the same quantum numbers. We examine the scattering amplitudes and their poles, which can be associated to known JP=1/2,3/2J^P=1/2^-,3/2^- baryon resonances, and determine the role of the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated with only the basis of vector-baryon states
    corecore